Communications

Stereoselective Synthesis of trans-4,5-Disubstituted 1,3-Imidazolidin-2-ones by Reaction of an α-Nitrogen Carbanion with Imines

Naoki Kise,^{*,†} Kimiaki Kashiwagi, Mitsuru Watanabe, and Jun-ichi Yoshida*

Division of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-01, Japan

Received September 5, 1995[®]

The formation and reaction of dipole-stabilized anions adjacent to nitrogen have been studied extensively and are recognized as excellent tools for the synthesis of amine derivatives.^{1,2} As shown in Scheme 1, the reaction of α -nitrogen carbanions **1** with imines **2** could be the basis of a useful method for the synthesis of 1,2-diamines **4** if the adducts **3** are formed stereoselectively.³ 1,2-Diamines and their derivatives are of undisputable importance in organic synthesis. In particular, optically active 1,2-diphenylethylenediamine **4a** (R = Ph)⁴ and its derivatives are frequently utilized for enantioselective reactions^{6,10} and for optical resolution.¹¹ We report herein the stereoselective synthesis of trans-4,5-disubstituted

[†] Present address: Department of Biotechnology, Faculty of Engi-^a Abstract published in Advance ACS Abstracts, December 15, 1995.

(1) For a review, see: Beak, P.; Zajdel, W. J.; Reitz, D. B. Chem. Rev. 1984, 84, 471.

(2) For recent reports: (a) Zhang, P.; Gawley, R. E. Tetrahedron Lett. 1992, 33, 2945. (b) Meyers, A. I.; Milot, G. J. Am. Chem. Soc. 1993, 115, 6652. (c) Meyers, A. I.; Milot, G. J. Org. Chem. **1993**, 58, 6538. (d) Resek, J. R.; Beak, P. J. Am. Chem. Soc. **1994**, 116, 405. (e) Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994, 116, 3231. Other references cited therein.

(3) The reaction of α -nitrogen carbanions formed from N-methyl-N-benzylphosphoramides with imines was previously reported. The

results regarding diastereoselectivity, however, were not described: Savignac, P.; Leroux, Y.; Normant, H. *Tetrahedron* **1975**, *31*, 877. (4) Optically active **4a** has been obtained by optical resolution of *dl*-**4a** prepared from benzaldehyde⁵ or benzil⁶ or by transformation from opticall active 1,2-diphenylethane-1,2-diol.⁷ Recently, it has been reported that the reductive coupling of imines is an effective method for the stereoselective synthesis of dl-**4a**⁸ or (R,R)-**4a**.⁹ (5) (a) Williams, O. F.; Bailar, J. C., Jr. J. Am. Chem. Soc. **1959**,

(a) Winanis, O. F., Banai, J. C., Jr. J. An. Chen. Soc. 1993, 81, 4464.
(b) Saigo, K.; Kubota, N.; Takebayashi, S.; Hasegawa, M. Bull. Chem. Soc. Jpn. 1986, 59, 931.
(6) Corey, E. J.; Inwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493.

(7) (a) Pini, D.; Iuliano, A.; Rosini, C.; Salvadori, P. Synthesis 1990, 1023. (b) Lohray, B. B.; Ahuja, J. A. J. Chem. Soc., Chem. Commun. 1991, 95.

(8) (a) Roskamp, E. J.; Pedersen, S. F. J. Am. Chem. Soc. 1987, 109, 3152. (b) Betshhart, C.; Seebach, D. Helv. Chim. Acta 1987, 70, 2215. (c) Mangeney, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J. Synthesis 1988, 255.

(9) (a) Shono, T.; Kise, N.; Oike, H.; Yoshimoto, M.; Okazaki, E. Tetrahedron Lett. 1992, 33, 5559. (b) Kise, N.; Oike, H.; Okazaki, E.; Yoshimoto, M.; Shono, T. J. Org. Chem. 1995, 60, 3980.

(10) For recent reports, see: (a) Corey, E. J.; Jardine, P. D.; Virgil, Yuen, P. W.; Connell, R. D. *J. Am. Chem. Soc.* **1989**, *111*, 9243. (b) Dalko, P. I.; Langlois, Y. Tetrahedron Lett. 1992, 33, 5213. (c) Ahn, K. H.; Yoo, D. J.; Kim, J. S. Tetrahedron Lett. 1992, 33, 6661. (d) Gamez, P.; Fache, F.; Mangeney, P.; Lemaire, M. *Tetrahedron Lett.* **1993**, *34*, 6897. (e) Nakajima, M.; Tomioka, K.; Koga, K. *Tetrahedron* 1993, 49, 9735. (f) Mukaiyama, T.; Yamada, T.; Nagata, T.; Imagawa, K. Chem. Lett. 1993, 327. (g) Hosoya, N.; Hatayama, A.; Irie, R.; Sasaki, H.; Katsuki, T. Tetrahedron 1994, 50, 4311. (h) Yoon, S. S.; Still, W. C. Tetrahedron Lett. 1994, 35, 2117

(11) For recent reports: (a) Kawashita, M.; Hirata, R. Bull. Chem. Soc. Jpn. **1993**, 66, 2002. (b) Brunner, H.; Schiessling, H. Angew. Chem., Int. Ed. Engl. **1994**, 33, 125.

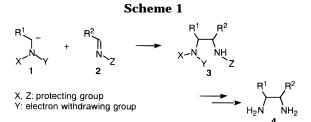
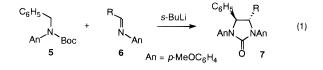



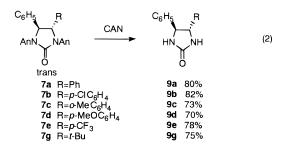
Table 1. Reaction of Lithiated 5 with Imines 6

run	R	imine	solvent	yield (%) of 7 ^a	trans:cis ^b
1	Ph	6a	Et ₂ O	7a 87	98:2
2	Ph	6a	THF	7a 70	93:7
3	p-ClC ₆ H ₄	6b	Et ₂ O	7 b 88	>99:1
4	o-MeC ₆ H ₄	6c	Et ₂ O	7c 22	>99:1
5	o-MeC ₆ H ₄	6c	THF	7c 92	>99:1
6	p-MeOC ₆ H ₄	6d	Et ₂ O	7d 45	>99:1
7	p-MeOC ₆ H ₄	6d	THF	7 d 80	84:16
8	$p-CF_3C_6H_4$	6e	Et ₂ O	7e 88	>99:1
9	2-Furyl	6f	Et ₂ O	7f 73	41:59
10	<i>t</i> -Butyl	6g	Et ₂ O	7g 0	
11 ^c	<i>t</i> -Butyl	6g	Et ₂ O	$\mathbf{7g} 64^d$	>99:1

^a Isolated yields. ^b Determined by ¹H NMR. ^c In the presence of BF_3 ·Et₂O. ^{*d*} Obtained as **8**. See text.

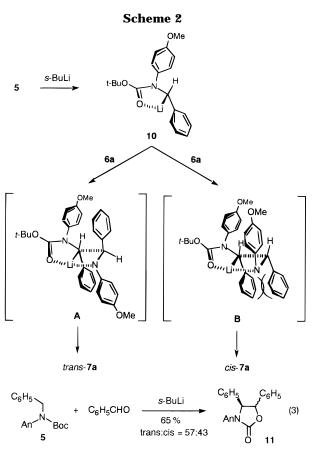
1,3-imidazolidin-2-ones 7 by the reaction of the α -nitrogen carbanion of *N*-benzyl-*N*-Boc-*p*-methoxyaniline (5) with imines 6 derived from p-anisidine (eq 1). This new synthetic route to the cyclic ureas of 1,2-diamines 4 has a distinct advantage in that not only symmetrical 7 (R = Ph) but also unsymmetrical 7 $(R \neq Ph)$ can be synthesized stereoselectively.¹²

Deprotonation of *N*-benzyl-*N*-Boc-*p*-methoxyaniline (5) was achieved using s-BuLi as a base. Treatment of 5 with 1.1 equiv of s-BuLi in Et_2O at -78 °C for 2 h followed by the addition of benzylidene-p-anisidine (6a) as an electrophile (1 equiv) resulted in the formation of 4,5diphenyl-1,3-imidazolidin-2-one derivative 7a in good yield (87%) with high trans selectivity (trans:cis = 98:2) (Table 1, run 1). The use of THF as a solvent caused a decrease in both the yield and selectivity (run 2). Imines **6b**-**g** derived from *p*-anisidine also resulted in the corresponding products 7b-g in satisfactory yields as shown in Table 1. In the reactions of (o-methylbenzylidene)-p-anisidine (6c) and (p-methoxybenzylidene)*p*-anisidine (6d) (runs 4-7), use of THF as the solvent resulted in better yields than Et₂O, since these imines are sparingly soluble in Et₂O at -78 °C (runs 4 and 6). (2-Furylmethylidene)-p-anisidine (6f) resulted in the product 7f, although the diastereoselectivity was low (run 9). *tert*-Amylidene-*p*-anisidine (7g) did not react with 5 and was recovered quantitatively under the prescribed conditions (run 10). However, the addition of 1 equiv of BF₃·Et₂O to the reaction mixture caused the formation


0022-3263/96/1961-0428\$12.00/0 © 1996 American Chemical Society

⁽¹²⁾ The stereoselective synthesis of optically active unsymmetrical 1,2-diamines from α -amino acids has been reported: Reetz, M. T.; Jaeger, R.; Drewlies, R.; Hübel, M. Angew. Chem., Int. Ed. Engl. 1991, 30. 103.

of the adduct **8**, which was converted to **7g** quantitatively by treatment with NaH in refluxing THF (run 11).



The major isomer of **7a** was deprotected to 4,5diphenyl-1,3-imidazolidin-2-one (**9a**) in 80% yield upon treatment with ceric ammonium nitrate (CAN) (4.4 equiv) in CH₃CN-H₂O at 0 °C,¹³ and the configuration of the obtained **9a** was confirmed to be trans by comparison with an authentic sample.¹⁴ The results of the transformation of **trans-7b**-**g** to **9b**-**g** are shown in eq 2.

The high trans selectivity in the formation of 7 can be explained in terms of the transition state shown in Scheme 2. It is reasonable that the lithiated anion of 5 (10) is stabilized by the coordination of lithium by the Boc carbonyl oxygen (dipole-stabilized carbanion). If imine **6a** approaches anion **10** with coordination of its nitrogen atom to the lithium metal, transition state **A** is more favorable than **B** due to the lesser repulsion between the two phenyl groups. Therefore, *trans*-adducts are formed predominantly.

The reaction of **10** with benzaldehyde resulted in adduct **11** with only modest selectivity (trans:cis = 57: 43) (eq 3). Other studies on the reactions of α -nitrogen carbanions with aromatic aldehydes show that the selectivity varies greatly with the structure of the sub-

strate.^{15,16} Our results suggest that the use of imines as electrophiles is critical for the high stereoselectivity with carbamate **5**. Further studies to clarify the reaction mechanism and to extend this reaction to the synthesis of other types of 1,2-diamine derivatives are in progress.

Supporting Information Available: Experimental details and compound characterization data (7 pages).

JO951592K

⁽¹³⁾ Kronenthal, D. R.; Han, C. Y.; Taylor, M. K. J. Org. Chem. 1982, 47, 2765.

⁽¹⁴⁾ Sankhavasi, W.; Yamamoto, M.; Kohmoto, S.; Yamada, K. Bull. Chem. Soc. Jpn. **1991**, 64, 1425.

⁽¹⁵⁾ It has been reported that the reactions of α -lithiated tetrahydroisoquinoline and piperidine derivatives with aromatic aldehydes showed low diastereoselectivities: (a) Seebach, D.; Syfrig, M. A. *Angew. Chem., Int. Ed. Engl.* **1984**, *23*, 248. (b) Rein, K. S.; Gawley, R. E. *J. Org. Chem.* **1991**, *56*, 1564. (c) Beak, P.; Lee, W. K. *J. Org. Chem.* **1993**, *58*, 1109.

⁽¹⁶⁾ High three selectivities have been reported in the reactions of α -lithiated dihydroindole and pyrrolidine amidines with aromatic aldehydes: (a) Meyers, A. I.; Hellring, S. *Tetrahedron Lett.* **1981**, *22*, 5119. (b) Sanner, M. A. *Tetrahedron Lett.* **1989**, *30*, 1909.